Rabu, 31 Maret 2010

pengetahuan deklaratif dan prosedural

Hal mendasar yang membedakan pengetahuan deklaratif dan pengetahuan prosedural adalah pengetahuan deklaratif menyatakan pengetahuan tentang apa sesuatu itu, sedangkan pengetahuan prosedural ialah pengetahuan tentang bagaimana melakukan sesuatu atau pengetahuan itu.
Contoh :
Pengetahuan deklaratif
Apa itu atom?
Jawab : atom adalah bagian terkecil dari suatu benda atau zat yang didalamnya terkandung elektron, proton dan neutron.
Apa bunyi teori asam basa Arrhenius?
Jawab : asam menurut Arrhenius adalah zat yang melepas H+ dalam air, sedangkan basa menurut Arrhenius adalah zat yang melepas OH- dalam air.
Pengetahuan prosedural
Bagaimana menyetarakan reaksi H2 + O2  H2O !
Jawab : perhatikan jumlah H dan O reaktan dan produk, lalu kita dapat lihat jumlah O reaktan adalah 2, sementara jumlah O pada produk adalah 1, maka beri angka 2 di depan H2O (2H2O). Setelah itu, perhatikan kembali jumlah H produk dan rektan. Kita melihat jumlah H produk adalah 4, sementara jumlah H produk adalah 2, maka beri angka 2 di depan H reaktan (2H2) agar jumlah H produk = H reaktan.
H2 + O2  H2O H2 + O2  2H2O 2H2 + O2  2H2O
Bagaimana menentukan mol 34 gram NH3 dengan Ar N =14 g/mol, Ar H = 1gr/mol ?
Jawab : Kita tentukan terlebih dahulu nilai Mr NH3
1. Ar N + 3. Ar H = 14 + 3 = 17 gr/mol
Diketahui rumus mol =
Sehingga mol 34 gr NH3 = = 2 mol
Jadi mol 34 gram NH3 adalah 2 mol.

Perbedaan antara pengetahuan deklaratif dan pengetahuan prosedural, atau pengetahuan apa dan pengetahuan bagaimana dikemukakan pula oleh beberapa ahli. Gagne mengungkapkan perbedaan antara pengetahuan deklaratif dan pengetahuan prosedural sebagai berikut. Pengetahuan deklaratif berhubungan dengan kemampuan menyatakan informasi verbal, sementara pengetahuan prosedural berhubungan dngan keterampilan intelektual dalam mengetahui bagaimana melakukan sesuatu. Jadi deklaratif bersifat pasif, dan prosedural bersifat dinamis dimana keberlangsungannya dibutuhkan kemampuan keognitif dan tindakan.
Contoh :
Kita mengetahui informasi verbal mol adalah perbandingan massa dengan massa relatif (deklaratif).
Kita tau bagaimana menyelesaikan permasalahan jumlah mol dari 34 gram NH3.
Menurut Ryle perbedaan antara pengetahuan deklaratif dan pengetahuan prosedural adalah sebagai berikut: Pengetahuan deklaratif harus dimiliki secara menyeluruh, dengan kata lain semua atau tidak sama sekali. Kita tidak pernah mengatakan bahwa seseorang itu mempunyai pengetahuan sebagian dari suatu fakta, atau kebenaran. Tetapi, seseorang dapat mengetahui sebagian bagaiman melakukan sesuatu, yaitu keterbatasan kemampuan. Selain itu, menurut Ryle, pengetahuan deklaratif dapat dikomunikasikan secara verbal, sedangkan pengetahuan prosedural tidak.

hidrogen peroksida

KINETIKA REAKSI HIDROGEN PEROKSIDA DAN ASAM IODIDA

1.II. PRINSIP PERCOBAAN
Reaksi hidrogen peroksida dengan kalium iodida dapat terjadi dalam suasana asam dan dengan adanya natrium tiosulfat, dimana peroksida akan membebaskan iodium yang berasal dari Kalium Iodida. Kinetika kimia adalah cabang ilmu kimia yang mempelajari laju reaksi secara kuantitatif dan juga mempelajari faktor-faktor yang mempengaruhi laju reaksi tersebut. Sedangkan jumlah mol reaktan persatuan volume yang bereaksi dalam satuan waktu tertentu dikenal dengan laju reaksi kimia. Laju reaksi terukur, sering kali disebut dengan konsentrasi reaktan suatu pangkat.
III.    TINJAUAN PUSTAKA
Dalam ilmu kimia kita tentu sering mendengar istilah laju reaksi. dalam penerapannya, jika laju reaksi tersebut sebanding dengan konsentrasi dua reaktan A dan B sehingga:
v = k [A][B]
koefisien k disebut konstanta laju, yang tidak bergantung pada konsentrasi (tetapi bergantung pada temperatur). Lain halnya dengan ordo dari suatu reaksi kimia, ordo reaksi nilainya ditentukan secara percobaan dan tidak dapat diturunkan secara teori, walaupun stokhiometrinya telah diketahui (Atkins, 1996).
Besar kecilnya nilai dari laju dari suatu reaksi kimia dapat ditentukan dalam beberapa faktor, antara lain sifat pereaksi, suhu, katalis dan konsentrasi pereaksi. Dalam  sifat pereaksinya, ada yang reaktif dan ada yang kurang reaktif, misalnya bensin lebih cepat terbakar daripada minyak tanah. Berdasarkan suhunya, hampir semua pereaksi menjadi lebih cepat bila suhu dinaikkan, karena kalor yang diberikan akan menambah energi kinetik partikel pereaksi, akibatnya, jumlah energi tabrakan bertambah besar. Dalam katalis, laju reaksi dapat dipercepat dengan menambah zat yang disebut katalis. Katalis sangat diperlukan dalam reaksi organik, termasuk dalam organisme. Sedangkan pada konsentrasi pereaksi, dua molekul yang akan bereaksi harus bertabrakan langsung. Jika konsentrasi pereaksi diperbesar, berarti kerapatannya bertambah dan akan memperbanyak kemungkinan tabrakan sehingga akan mempercepat reaksi (Syukri, 1999).
Dalam percobaan ini volume tiosulfat yang dititrasikan sebesar b adalah jumlah peroksida yang bereaksi selama t detik, maka konsentrasi peroksida setelah t detik adalah sebesar (a-b). Jika a adalah banyaknya tiosulfat yang setara dengan peroksida saat to atau mula-mula. Dengan membuat grafik ln (a-b) terhadap t maka akan didapatkan –k sebagai slope sehingga harga k dapat ditentukan. Dengan  persamaan sebagai berikut:
ln (a – b)  =  -kt  +  ln a (Atkins, 1996).
Kecepatan reaksi sangat bergantung pada ion peroksida, kalium iodida dan asamnya. Reaksi hidrogen peroksida dengan kalium iodida dalam suasana asam dan dengan adanya natrium tiosulfat, maka peroksida akan membebaskan iodium yang berasal dari kalium iodida yang telah diasamkan dengan asam sulfat. Bila reaksi ini merupakan reaksi irreversibel (karena adanya natrium tiosulfat yang akan merubah iodium bebas menjadi asam iodida kembali) kecepatan reaksi yang terjadi besarnya seperti pada reaksi pembentukannya, sampai konsentrasi terakhir tak berubah (Bird,1993).
VI. PEMBAHASAN
6.1 Mencari Kesetaraan mL H2O2 dengan Na2S2O3
Percobaan ini bertujuan untuk mempelajari kinetika reaksi dari hidrogen perosida dengan asam iodida. Untuk mencari nilai ekivalen dari H2O2 dilakukan standarisasi dengan Na2S2O3. Namun karena hidrogen peroksida tidak dapat dititrasi langsung dengan tiosulfat, maka H2O2 terlebih dahulu distandarisasi dengan KMnO4, baru kemudian Na2S2O3 distandarisasi dengan KMnO4, sehingga melalui perbandingan molnya dapat ditentukan ekivalen dari hidrogen peroksida dengan ion tiosulfat. Dalam praktikum ini yang mengindikasikan telah habisnya tiosulfat yang ditambahkan dari buret ke gelas beker adalah perubahan warna larutan.  Karena tiosulfat habis maka iod hasil reaksi hidrogen peroksida dan kalium iodida berlebih karena tidak ada spesies lain yang menangkapnya.  Perubahan warna larutan dari bening akan menjadi biru.  Inilah yang digunakan dalam mengukur waktu habisnya tiosulfat yang ditambahkan, dimana tiosulfat setara dengan peroksida..
Untuk mencari ekivalen antara H2O2 dengan Na2S2O3, hidrogen peroksida direaksikan dengan kalium permanganat pada suasana asam, sehingga penambahan asam (H2SO4) ini akan dapat mengoksidasi MnO4- menjadi Mn2+ dan mempercepat terjadinya reaksi. Asam sulfat yang digunakan memepunyai konsentrasi cukup tinggi yaitu 2 N dan laju penambahan volum titran dilakukan cukup lambat, hal ini dilakukan untuk mencegah terbentuknya mangan dioksida yang merupakan katalis yang aktif untuk penguraian hidrogen peroksida.
Reaksi :
2 MnO4- + 5H2O2 + 6 H+ 2MN2+ + 5O2 + 8H2O
Larutan hidrogen peroksida dalam suasana asam tidak berwarna atau bening, akibatnya pada proses titrasi sedikit saja kelebihan reagen permanganat akan memunculkan warna pada larutan .  Pada  percobaan ini titik ekivalen ditandai dengan terjadinya perubahan warna dari bening menjadi merah muda pada volum titran sebesar 10,3 ml. Dan dari hasil perhitungan diperoleh konsentrasi hidrogen peroksida sebesar  0,103 N.
Pada standarisasi thiosulfat, kalium permanganat terlebih dahulu direaksikan dengan KI dalam suasana asam (H2SO4) sehingga akan membebaskan I2. Di sini juga dilakukan penambahan amilum sehingga larutan yang semula berwarna kuning berubah menjadi hitam. Adanya indikator amilum dapat digunakan untuk mendeteksi apakah iodium habis bereaksi dengan tiosulfat. Karena reaksi antara iodium dan tiosulfat selalu menghasilkan ion iodida, maka reaksi kembali berulang dengan terjadinya perubahan warna menjadi seperti semula. Penambahan indikator amilum dilakukan pada awal reaksi, padahal akibat penambahan ini dapat terbentuk kompleks I2-amilum yang menyebabkan penggunaan volum thiosulfat secara berlebih. I2-amilum bereaksi dengan thiosulfat dan membebaskan ion I- yang tidak berwarna.Reaksi :
2 MnO4- + 10 I- + 16 H+ 5I2 +  2Mn2+ +  8H2O
I2 +    amilum                     I2-amilum
I2-amilum  +  2S2O32- 2I2 + amilum +   S4O62-
Pada titik ekivalen titrasi, larutan berubah dari kuning menjadi merah kecoklatan dan dari hasil perhitungan didapatkan konsentrasi natrium thiosulfat sebesar 0,1 N. Indikator amilum digunakan untuk mendeteksi apakah iodium habis bereaksi dengan tiosulfat. Karena reaksi antara iodium dan tiosulfat selalu menghasilkan ion iodida, maka reaksi kembali berulang dengan terjadinya perubahan warna menjadi seperti semula. Dari hasil perhitungan didapatkan hasil bahwa kesetaran antara H2O2 dan 2S2O3 adalah 1 : 2.

6.2 Laju Reaksi
Reaksi antara hidrogen peroksida dengan asam iodida merupakan suatu reaksi redoks dimana hidrogen peroksida merupakan oksidator sedangkan asam iodida bertindak sebagai reduktornya. Dan tergolong sebagai reaksi orde pertama dimana kecepatan reaksi hanya bergantung pada satu pereaksi saja, yaitu konsentrasi hidrogen peroksida. Reaksinya dapat dituliskan sebagai berikut:
H2O2 +  2 HI                   I2 +  2 H2O
Asam iodida terbentuk karena pengasaman kristal KI dengan asam sulfat pekat. Iodium yang terbentuk bereaksi dengan tiosulfat yang ditambahkan hingga terjadi perubahan warna dari yang semula berwarna biru menjadi bening. Apabila tiosulfat habis bereaksi maka larutan kembali menjadi berwarna biru. Reaksi yang terjadi antara hidrogen peroksida dengan asam iodida selama proses titrasi:
Dari grafik yang dibuat dapat ditentukan nilai konstanta kecepatan reaksi (k). Nilai k merupakan slope yang terbentuk dari grafik ln (a-b) terhadap waktu, dimana a merupakan konsentrasi awal tiosulfat dan b konsentrasi tiosulfat pada titrasi detik. Nilai k yang diperoleh sebesar 0,6676 mol L-1 det-1.

Selasa, 23 Maret 2010

KOnsep MOl

Unsur dengan jumlah mol berbeda

Unsur dengan jumlah mol berbeda

Hubungan Mol dengan Tetapan Avogadro

Kuantitas atom, molekul dan ion dalam suatu zat dinyatakan dalam satuan mol. Misalnya, untuk mendapatkan 18 gram air maka 2 gram gas hidrogen direaksikan dengan 16 gram gas oksigen.

2H2O + O2 → 2H2O

Dalam 18 gram air terdapat 6,023×1023 molekul air. Karena jumlah partikel ini sangat besar maka tidak praktis untuk memakai angka dalam jumlah yang besar. Sehingga iistilah mol diperkenalkan untuk menyatakan kuantitas ini. Satu mol adalah jumlah zat yang mangandung partikel (atom, molekul, ion) sebanyak atom yang terdapat dalam 12 gram karbon dengan nomor massa 12 (karbon-12, C-12). Jumlah atom yang terdapat dalam 12 gram karbon-12 sebanyak 6,02×1023 atom C-12. tetapan ini disebut tetapan Avogadro.

Tetapan Avogadro (L) = 6,02×1023 partikel/mol

Lambang L menyatakan huruf pertama dari Loschmidt, seorang ilmuwan austria yang pada tahun 1865 dapat menentukan besarnya tetapan Avogadro dengan tepat. Sehingga,

1 mol emas = 6,02×1023 atom emas

1 mol air = 6,02×1023 atom air

1 mol gula = 6,02×1023 molekul gula

1 mol zat X = L buah partikel zat X

Hubungan Mol dengan Jumlah Partikel

Telah diketahui bahwa 1mol zat X = l buah partikel zat X, maka

2 mol zat X = 2 x L partikel zat X

5 mol zat X = 5 x L partikel zat X

n mol zat X = n x L partikel zat X

Jumlah partikel = n x L

Contoh soal:

Berapa mol atom timbal dan oksigen yang dibutuhkan untuk membuat 5 mol timbal dioksida (PbO2).

Jawab :

1 mol timbal dioksida tersusun oleh 1 mol timbal dan 2 mol atom oksigen (atau 1 mol molekul oksigen, O2). Sehingga terdapat

Atom timbal = 1 x 5 mol = 5 mol

Atom oksigen = 2 x 5 mol = 10 mol (atau 5 mol molekul oksigen, O2)

Contoh soal

Berapa jumlah atom besi (Ar Fe = 56 g/mol) dalam besi seberat 0,001 gram.

Jawab

rm14

Massa Molar

Telah diketahui bahwa satu mol adalah jumlah zat yang mengandung partikel (atom, molekul, ion) sebanyak atom yang terdapat dalam 12 gram karbon dengan nomor massa 12 (karbon-12, C-12). Sehingga terlihat bahwa massa 1 mol C-12 adalah 12 gram. Massa 1 mol zat disebut massa molar. Massa molar sama dengan massa molekul relatif (Mr) atau massa atom relatif (Ar) suatu zat yang dinyatakan dalam gram.

Massa molar = Mr atau Ar suatu zat (gram)

Contoh:

Massa dan Jumlah Mol Atom/Moleku

Massa dan Jumlah Mol Atom/Moleku

Hubungan mol dan massa dengan massa molekul relatif (Mr) atau massa atom relatif (Ar) suatu zat dapat dicari dengan

Gram = mol x Mr atau Ar

Contoh soal:

Berapa mol besi seberat 20 gram jika diketahui Ar Fe = 56 g/mol

Jawab :

Besi tersusun oleh atom-atom besi, maka jumlah mol besi

rm25

Contoh soal :

Berapa gram propana C3H8 dalam 0,21 mol jika diketahui Ar C = 12 dan H = 1

Jawab:

Mr Propana = (3 x 12) + (8 x 1) = 33 g/mol, sehingga,

gram propana = mol x Mr = 0,21 mol x 33 g/mol = 9,23 gram

Volume Molar

Avogadro mendapatkan hasil dari percobaannya bahwa pada suhu 0°C (273 K) dan tekanan 1 atmosfir (76cmHg) didapatkan tepat 1 liter oksigen dengan massa 1,3286 gram. Maka,

rm33

Karena volume gas oksigen (O2) = 1 liter,

rm43

Pengukuran dengan kondisi 0°C (273 K) dan tekanan 1 atmosfir (76cmHg) disebut juga keadaan STP(Standard Temperature and Pressure). Pada keadaan STP, 1 mol gas oksigen sama dengan 22,3 liter.

Avogadro yang menyata-kan bahwa pada suhu dan tekanan yang sama, gas-gas yang bervolume sama mengandung jumlah molekul yang sama. Apabila jumlah molekul sama maka jumlah molnya akan sma. Sehingga, pada suhu dan tekanan yang sama, apabila jumlah mol gas sama maka volumenyapun akan sama. Keadaan standar pada suhu dan tekanan yang sma (STP) maka volume 1 mol gas apasaja/sembarang berharga sama yaitu 22,3 liter. Volume 1 mol gas disebut sebagai volume molar gas (STP) yaitu 22,3 liter/mol.

Volume Gas Tidak Standar

Persamaan gas ideal

Persamaan gas ideal dinyatakan dengan:

PV=nRT

keterangan:

P; tekanan gas (atm)

V; volume gas (liter)

N; jumlah mol gas

R; tetapan gas ideal (0,082 liter atm/mol K) T; temperatur mutlak (Kelvin)

Gas Pada Suhu dan Tekanan Sama

Avogadro melalui percobaannya menyatakan bahwa pada suhu dan tekanan yang sama, gas-gas yang bervolume sama mengandung jumlah molekul yang sama. Apabila jumlah molekulnya sama maka jumlah molnya sama. Jadi pada suhu dan tekanan yang sama perbandingan mol gas sama dengan perbandingan volume gas. Maka,

rm52

Molaritas

Larutan merupakan campuran antara pelarut dan zat terlarut. Jumlah zat terlarut dalam larutan dinyatakan dalam konsentrasi. Salah satu cara untuk menyatakan konsentrasi dan umumnya digunakan adlah dengan molaritas (M). molaritas merupakan ukuran banyaknya mol zat terlarut dalam 1 liter larutan.

rm62

pengenceran dilakukan apabila larutan terlalu pekat. Pengenceran dilakukan dengan penambahan air. Pengenceran tidak merubah jumlah mol zat terlarut. Sehingga,

V1M1 = V2M2

keterangan:

V1 = volume sebelum pengenceran

M1 = molaritas sebelum pengenceran

V2 = volume sesudah pengenceran

M2 = molaritas sesudah pengenceran

pembuatanlarutan
chem.com

hitungan kimia

HItungan kimia adalah perhitungan yang berorientasi pada hukum-hukum dasar kimia. hukum-hukum dasar itu meliputi :

1. HUKUM KEKEKALAN MASSA = HUKUM LAVOISIER

“Massa zat-zat sebelum dan sesudah reaksi adalah tetap”.

Contoh:
hidrogen + oksigen → hidrogen oksida
(4g) (32g) (36g)

2. HUKUM PERBANDINGAN TETAP = HUKUM PROUST

“Perbandingan massa unsur-unsur dalam tiap-tiap senyawa adalah tetap”

Contoh:
a. Pada senyawa NH3 : massa N : massa H
= 1 Ar . N : 3 Ar . H
= 1 (14) : 3 (1) = 14 : 3
b. Pada senyawa SO3 : massa S : massa 0
= 1 Ar . S : 3 Ar . O
= 1 (32) : 3 (16) = 32 : 48 = 2 : 3

Keuntungan dari hukum Proust:
bila diketahui massa suatu senyawa atau massa salah satu unsur yang membentuk senyawa tersebut make massa unsur lainnya dapat diketahui.

Contoh:
Berapa kadar C dalam 50 gram CaCO3 ? (Ar: C = 12; 0 = 16; Ca=40)
Massa C = (Ar C / Mr CaCO3) x massa CaCO3
= 12/100 x 50 gram = 6 gram
massa C
Kadar C = massa C / massa CaCO3 x 100%
= 6/50 x 100 % = 12%

3. HUKUM PERBANDINGAN BERGANDA = HUKUM DALTON

“Bila dua buah unsur dapat membentuk dua atau lebih senyawa untuk massa salah satu unsur yang sama banyaknya maka perbandingan massa unsur kedua akan berbanding sebagai bilangan bulat dan sederhana”.

Contoh:

Bila unsur Nitrogen den oksigen disenyawakan dapat terbentuk,
NO dimana massa N : 0 = 14 : 16 = 7 : 8
NO2 dimana massa N : 0 = 14 : 32 = 7 : 16

Untuk massa Nitrogen yang same banyaknya maka perbandingan massa Oksigen pada senyawa NO : NO2 = 8 :16 = 1 : 2

4. HUKUM-HUKUM GAS

Untuk gas ideal berlaku persamaan : PV = nRT

dimana:
P = tekanan gas (atmosfir)
V = volume gas (liter)
n = mol gas
R = tetapan gas universal = 0.082 lt.atm/mol Kelvin
T = suhu mutlak (Kelvin)

Perubahan-perubahan dari P, V dan T dari keadaan 1 ke keadaan 2 dengan kondisi-kondisi tertentu dicerminkan dengan hukum-hukum berikut:

A. HUKUM BOYLE

Hukum ini diturunkan dari persamaan keadaan gas ideal dengan
n1 = n2 dan T1 = T2 ; sehingga diperoleh : P1 V1 = P2 V2

Contoh:
Berapa tekanan dari 0 5 mol O2 dengan volume 10 liter jika pada temperatur tersebut 0.5 mol NH3 mempunyai volume 5 liter den tekanan 2 atmosfir ?

Jawab:
P1 V1 = P2 V2
2.5 = P2 . 10 / P2 = 1 atmosfir

B. HUKUM GAY-LUSSAC

“Volume gas-gas yang bereaksi den volume gas-gas hasil reaksi bile diukur pada suhu dan tekanan yang sama, akan berbanding sebagai bilangan bulat den sederhana”.

Jadi untuk: P1 = P2 dan T1 = T2 berlaku : V1 / V2 = n1 / n2

Contoh:
Hitunglah massa dari 10 liter gas nitrogen (N2 ) jika pada kondisi tersebut 1 liter gas hidrogen (H2 ) massanya 0.1 g.
Diketahui: Ar untuk H = 1 dan N = 14

Jawab:

V1/V2 = n1/n2

10/1 = (x/28) / (0.1/2)

x = 14 gram

Jadi massa gas nitrogen = 14 gram.

C. HUKUM BOYLE-GAY LUSSAC

Hukum ini merupakan perluasan hukum terdahulu dan diturunkan dengan keadaan harga n = n2 sehingga diperoleh persamaan:

P1. V1 / T1 = P2 . V2 / T2

D. HUKUM AVOGADRO

“Pada suhu dan tekanan yang sama, gas-gas yang volumenya sama mengandung jumlah mol yang sama. Dari pernyataan ini ditentukan bahwa pada keadaan STP (0o C 1 atm) 1 mol setiap gas volumenya 22.4 liter volume ini disebut sebagai volume molar gas.

Contoh:
Berapa volume 8.5 gram amoniak (NH3) pada suhu 27o C dan tekanan 1 atm ?
(Ar: H = 1 ; N = 14)

Jawab:
85 g amoniak = 17 mol = 0.5 mol

Volume amoniak (STP) = 0.5 x 22.4 = 11.2 liter

Berdasarkan persamaan Boyle-Gay Lussac:

P1 . V1 / T1 = P2 2 . V2 / T2
1 x 112.1 / 273 = 1 x V2 / (273 + 27)

V2 = 12.31 liter

(dari chem.com)

Kamis, 11 Maret 2010

indah

Mungkin tak semua orang merasakan indahnya hidup ini. apalagi jika kita sadari banyak orang di sekitar kita yang perduli dan mau membantu kita di saat kita kesulitan.